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The performance of rotary-wing aircraft is limited by a host of aerodynamic problems.
Foremost among these problems are transonic flow (which is the primary drag source on high-
speed propellers and advancing helicopter rotor blades) and stall (on retreating helicopter
blades); but there are many other flow problems-especially on helicopters, which operate
under a wide variety of conditions and constraints. For example, a helicopter often operates
under conditions of flow separation and in its own wake. Because of such flow complexity
the aerodynamic design of helicopters is traditionally an empirical craft that often relies more
on experience and test than on detailed analysis. This approach requires a high degree of
design conservatism. In spite of a cautious design philosophy, rotorcraft development often
encounters unexpected and sometimes dangerous aerodynamic problems. Such occurrences
will persist as long as we require new designs but lack the ability to predict and control the
details of rotorcraft flows.

The ability to design rotorcraft with confidence requires a new order of aerodynamic pre-
dictive technology that is both true to the basic flow physics and readily usable by industry.
The burgeoning field of computational fluid dynamics (CFD) holds the promise of provid-
ing the necessary new tools. In the fixed-wing community, CFD has indeed revolutionized
aerodynamics-even to the extent of permitting the freezing of important design features on
the basis of computations alone. The rotorcraft community is currently far from this level
of confidence, because the basic flow phenomena are more complex, diverse, and interdepen-
dent (i.e., many phenomena occur simultaneously and affect each other directly or indirectly
through their effects on the flight state).

Some of the basic flow phenomena are illustrated in Fig. 1. The first area of aerodynamic
concern on a helicopter is the design of the main rotor, to maximize hover and forward-flight
performance and minimize vibratory loads and noise. These are conflicting requirements,
which necessitate difficult design compromises. For example, the choice of rotor tip speed is a
compromise between minimizing transonic flow effects on the advancing rotor and stall effects
on the retreating side. However, this compromise is strongly affected by the choice of airfoils,
planform, and twist, and the propulsive requirement. The determination of these features, in
turn, depends on the fuselage drag and the rotor flow environment, which is strongly affected
by the rotor motion (flapping and elastic deformation) and its wake structure. Therefore,
a rotor analysis is q holistic process that involves the blade aerodynamics, dynamics, elastic
properties, and fuselage effects. The analysis of various flow features are central to this process.
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Rotor CFD applications have not yet reached the level of sophistication that characterizes
fixed-wing computations, which include fairly extensive Reynolds-averaged, Navier-Stokes
solutions. However, these computations, which must in general be steady because of machine
limitations, suffice for most fixed-wing applications. Comparable viscous computations are
prohibitively costly for helicopter rotor analyses, because these must usually be unsteady.
Furthermore, there exist more immediate (and non-viscous-dominated) computational issues
that remain to be solved. These include:

1. ROTOR WAKE PREDICTION. The prediction of the rotor wake structure (its
geometry and circulation distribution) is one of the most important rotor flow issues.

For hover, the wake is the single most important flow issue, because it is the primary
determinant of induced power. However, the ability of any code to predict this wake with
sufficient accuracy is a subject of great debate. Certainly there exists no industry code
which can reliably predict the detailed effect of blade geometry (planform, for instance) on
the wake. This is because almost all current analyses are boundary-integral codes which
represent the rotor as a lifting line and do not treat the 3-D, non-linear compressible
blade flow.

For high-speed forward flight, the wake is somewhat less important, because it convects
more rapidly away from the blade. However, the wake is still close enough that a detailed
knowledge of its nature is required to predict vibratory loading. Also, it is generally
conceded that we do not understand the structure of advancing rotor wakes (because of
both experimental and computational difficulties) and we cannot reliably predict rotor
vibrations. For lower advance ratios and for descent conditions, the rotor and wake
closely or directly impinge on one another. No general analysis of this condition, called
Blade/Vortex Interaction (BVI), exists.

2. COMPRESSIBLE AERODYNAMICS. At high advance ratios the predominant
rotor drag source is due to transonic flow at the tips of the advancing blade. On a
high-speed tilt-rotor this transonic flow could conceivably involve the entire rotor. The
high drag results from the occurrence of supersonic flow and shocks. That such flows
are intrinsically unsteady and strongly three-dimensional demonstrates a weakness of the
present use of 2-D measured airfoil data to predict rotor loads and performance.

To date, the most conspicuous strides in rotor CFD have been in the development
of methods to solve the compressible flow problem using potential techniques. Although
some standardized codes have now been developed, numerous problems remain, including
the development of suitable methods to treat the boundary layer and coupling methods
to iitcrface these solutions to a global rotor analysis.

3. INTERACTION PROBLEMS. Rotorcraft are unique in the large number of compo-
nent and flow interactions that occur. The main rotor can interact closely with its own
shed wake (a source of noise and vibration), whose location is affected by the fuselage
flow field. The fuselage upwash also introduces rotor vibratory forces. In addition, the
main rotor and tail rotor can interact in hover to reduce the main rotor efficiency.

Most of the above-mentioned problems do not involve strong viscous forces and can be
treated by potential-based methods. Nevertheless, unsteadiness and structural and dynamic
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coupling makes the helicopter problem a very large one. Moreover, the helicopter problem
does involve very significant viscous complications which require resolution. These include

1. RETREATING BLADE DYNAMIC STALL. Blade flapping and cyclic input (re-
quired to satisfy propulsive requirements) drive the retreating blade to very high lift co-
efficients. Vortex interactions on the retreating side also exacerbate the problem. When
stall does occur, it happens after a dynamic delay and is far more violent (inducing very
high drags, pitching moments, and flutter) than steady stall is. This defines a hard perfor-
mance limit. The process is also strongly 3-D, but no method has yet been demonstrated
which consistently predicts even 2-D unsteady stall behavior. Development of the nec-
essary viscous flow methods is an important long-term goal. In the interim, however,
empirical engineering stall methods will be required and it will be necessary to find ways
to include these in our simpler (potential-based) CFD flow analyses.

2. FUSELAGE FLOWS. At high speeds, the largest helicopter power sink is the parasite
drag of the fuselage. Indeed, alleviating this drag (and hence the propulsive requirement)
is a most potent way of minimizing the retreating blade stall on the rotor. The devel-
opment of methods to predict the details of the fuselage flow therefore assumes great
importance. Helicopter fuselages are often unavoidably bluff and this causes separated
flows. To date, our ability to predict the drag of such bodies is limited and requires
empirical input. This ability is another long-term flow-prediction goal and one that can
benefit from fixed-wing aircraft experience.

Thus a wide variety of near- and long-term rotorcraft flow problems await resolution by
CFD methods. There are also many CFD rotor applications in current use. This paper will
introduce prospective users or developers to some of these methods and to the issues involved
in their use.

This exposition will begin with a description of the various flow equations and the physical
approximations they embody. The basic methods of solving these equations will be discussed.
This discussion will be aimed at methods that can enter common engineering use, now or in
the near future, and therefore, will be mainly confined to the various potential approximations.
Many methods have already been developed to treat various aspects of rotor flows, and some
of these are in wide use. The discussion of various potential methods will include the means
to combine these different analyses to obtain appropriate hybrid codes. A novel approach
to obtaining a unified solution (rather than a hybrid) will be discussed in the context of
performing hover computations. Methods will also be discussed for coupling CFD analyses
to comprehensive codes to obtain trim solutions. Comparisons will be made with data from
various flight and special-purpose experiments to demonstrate the efficacy of the varying flow
treatments. Finally, some advanced flow topics (including Navier-Stokes solutions) will be
outlined, in order to demonstrate the future possibilities as newer CFD methods mature and
become practical.
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II. FLOW EQUATIONS

The complexity of rotor behavior has required the use of a hierarchy of flow models that
are fast and pliable, and enable a comprehension of the entire system. The many limitations
of these approximate models have driven the development of CFD for rotor applications.
However, even the most elaborate and expensive of the CFD models involve approximations,
which break down under limiting, but not unusual, conditions. An awareness of the limits and
costs of the flow models is therefore useful. The following is accordingly concerned with those
flow models (from most comprehensive to the simplest) on which the new rotor flow methods
are based.

NAVIER-STOKES EQUATIONS

Many of the critical phenomena of concern involve dissipative processes (mainly viscous
forces). These processes include boundary layers, separation, and vortex formation. There are
other flow processes that require viscous dissipation but are effectively described by inviscid
models. These processes include shocks and the airfoil Kutta condition. Viscous phenomena
are so ubiquitous, however, that the need for a general viscous flow model will always be with
US.

The Navier-Stokes equations are considered to be valid for modeling all continuum flow
processes. For a perfect gas, these are

mass conservation: 0P + Npuj) 0 (1)

momentum conservation:

(pu) + O(puiuj) Op + 9 - (2)

at Ox3  Oxi Ox3

energy conservation:
Oh) O(phu, ) Op Op9 Oui Oq,a(ph) + apu)= 0p + uj _- + 'r, u, aq (3)

Ot + Oxj Ot Ox j Ox, Ox3  3j

where p is the density, u the velocity vector, p the pressure, h the specific enthalpy, Tij the
stress tensor, and q the heat flux vector. The thermodynamic quantities are related by the
state equations

p = pRT (4)

and

h = CpT (5)

where R is the gas constant and Cp is the specific heat at constant pressure. The only
assumptions to this point are that the fluid is a continuum and a perfect gas. (The latter
assumption would not hold under condensation or icing conditions.) The heat flux is given by

qi = O T (6)
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where k is the thermal conductivity. The relation between stress and rate of strain is given by

S= .x A. + f +  (7)

where bij is the Kronecker delta, \ = -2/3p the bulk viscosity (Stokes hypothesis), and p the
viscosity. This expression is based on the assumption that the fluid is isotropic (stress/rate-
of-strain relation is not direction dependent) and Newtonian (stress/rate-of strain relation is
linear). Although Eqs. (1-7) are believed to be correct, we cannot solve them without making
major simplifications.

Many numerical solutions of the actual time-dependent Navier-Stokes equations have
been obtained. However, these are usually only valid for laminar flows. For Reynolds numbers
greater than about 1000, flow becomes turbulent and dissipation becomes dominated by mixing
(rather than molecular) processes. The numerical resolution of the various characteristic
mixing scale lengths requires an extremely dense grid if the above equations are to be used. At
the present time such computations require tens to hundreds of hours on the fastest machines
(e.g., the CRAY-2), for flows in regions which are too small to be of use to the aircraft
engineer. Clearly, the importance of the Navier-Stokes equations is that they are required for
the eventual understanding of turbulent processes, and they will motivate the development
of supercomputers for many years to come. However, their engineering importance lies far in
the future.

In order to derive a unified set of viscous equations with application potential, resort is
made to Reynolds averaging. This has the effect of multiplying the number of dissipation
terms and introducing new effective viscous and conductive terms that require an assumed
mathematical model and defining relations. Most such mathematical models consist of a
simple algebraic or mixing-length, effective-viscosity expression. Such models are probably of
qualitative interest only for the modeling of separation effects. However, these are currently the
most-used viscous models because they are the simplest. For modeling extensive separation,
more complex models are required-K - E models, for instance. However, such viscous models
require the addition of two or more convection equations to the total system and reduce
the size of the problem that can be modeled with present resources. One frequently used
simplification involves the elimination of the streamwise viscous stress terms. The resulting
equations are referred to as the thin-layer Navier-Stokes (TNS) equations. The rationale for
this simplification is that streamwise viscous stress terms are usually much smaller than the
transverse stress terms. Furthermore, memory limitations usually do not permit sufficient grid
points to resolve the streamwise viscous stress (for a 3-D problem). Therefore, for problems
of real engineering interest, most unified viscous computations use the TNS equations with an
algebraic viscous model. Furthermore, most of these computations are performed for steady
flows.

EULER EQUATIONS
The above discussion should give some idea of the magnitude of the simplification which

results when an inviscid, nonconducting flow model can be used. When a grid can be sized
to resolve body geometry rather than viscous scales, the grid reduction can easily exceed a
factor of ten. The resulting equations are
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mass conservation: Op e9(pu )0+ - (8)
at Oxj

momentum conservation:
9(_pu) + D(puiuj) Op (9)

t axj Oxi

energy conservation:
O(ph) + (phu)= + uj op (10)

Although the neglect of viscosity is a great simplification, it raises interesting problems
for the modeling of those flow features that are apparently inviscid but require some viscosity
for initial setup. For instance, an "exact" solution of the Euler equations requires a separate
enforcement of the Kutta condition in order to avoid infinite pressures at the trailing edge.
However, many difference solutions do not require an explicit Kutta condition specification
because of artificial viscosity, which is a natural result of discretization errors. A hypothetical
numerical method that had a very low or nonexistent discretization error would require an
explicit enforcement of pressure continuity at the trailing edge. This, however, would be a
very small price to pay for something which would provide great benefits. The greatest of
these benefits would be the ability to convect vorticity without artificial dissipation. This
ability is an important issue for rotorcraft, on which the blades often interact with vortices
that are fairly old, but have not dissipated. By contrast, current numerical Euler methods
dissipate vortices in a very short time (often in several chords of travel).

It is also worth noting that an "exact" inviscid solution, that is, one lacking dissipation,
would require an imposition of jump conditions in order to predict flows with shocks. However,
a difference solution, with proper numerical dissipation, mimics reality and permits a shock
to arise naturally. This is usually referred to as "shock capturing." It is this ability that was
primarily responsible for the rapid growth of CFD in the 1970's. The presence of artificial
viscosity in inviscid methods is thus both a curse and a blessing.

POTENTIAL EQUATIONS

A considerable simplification of the inviscid flow equations is achieved by assuming irro-
tational flow. That is,

W= V x U =0 (11)

where w is the flow vorticity. Any vector field u that is irrotational can be described as the
gradient of a scalar potential field 0, or

U = VO (12)

The subsequent replacement of three velocity components by one scalar potential is a very
useful simplification. However, the greatest simplification is a considerable reduction in the
number of equations to be solved. Consider Crocco's equation,

Qu
TVs + u x w = Vho + ' (13)
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where h0 is the stagnation enthalpy. (This equation is derived from the second law of ther-
modynamics and conservation of mass and momentum.) If a flow is isentropic (a statement
of energy conservation) and we introduce a velocity potential, Eq. (13) reduces to

¢_ = -(h + I ujuj) (14)

Introducing the isentropic relation
p =gp . (15)

we obtain Bernoulli's equation,

=/P -
7 a'[ + I (VO) (16)

which together with the continuity equation,

Op

t + V.pVo=0 (17)

forms a complete equation system. The greatest simplification of the potential assumption is
that it permits the replacement of four differential equations (conservation of momentum and
energy) with a single algebraic equation. Therefore, potential methods are a minimum of five
times faster than equivalent Euler methods.

Equations (16) and (17) are actually not a complete system for lifting solutions, because
the presence of circulation requires a branch cut so that the potential will remain a single valued
function. That is, it is necessary to specify a jump in potential, F = AO =_ 0. - 01, whose
magnitude is the total upstream flow circulation (both bound and free). For a flow with free
circulation (vortex and circulation sheets), a r surface must coincide with the vortex sheets,
which usually commence at trailing edges. An expression for the branch-cut distribution is
obtained by enforcing the continuity of pressure along a stream surface shed from the trailing
edge. Using Eqs. (16) and (15), we have

Ap = p,, - pi = KA [¢t + 1v .O V] =0

where K is a constant, or
rt + Vave" VI = 0 (18)

where Va,,e = !(V, + VI) is the average velocity of the circulation sheet. Equation (18)
expresses the Kutta condition and it completes the potential-flow formulation. This Kutta
equation is a convection expression for the branch-cut surface. It describes the surface that
shed circulation must follow in order that there are no forces in the flow field. Equations (18)
and (16) are thus expressions of the conservation of momentum. Although the potential
equat. .s do conserve momentum in smooth flows, there is no strictly conservative statement
of momentum conservation. The resulting jump relations permit momentum losses through
shocks, and constitute a nonphysical drag mechanism in the isentropic potential model. (The
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physical shock drag mechanism is a jump in entropy rather than a momentum across a shock.)
This physical modeling error is usually small and easily corrected. Because Eqs. (16-18)
strictly conserve mass, they are referred to as the "conservative full-potential equations." With
appropriate treatment of shocks and vorticity transport, these equations probably represent
the optimum combination of accuracy and efficiency for inviscid transonic flow problems.

There are many other forms of the potential flow equations. Until recently, the more
usual form of the potential equation was that obtained by the elimination of p from Eqs. (16)
and (17). That is,

a2a 2 + a(V2)+V.V (=0 (19)

where V = V0, and a is the local speed of sound obtained by Bernoulli's equation and the
isentropic relation a2 

- Kp7 - 1 . Equation (19) is readily solved and forms the basis of several

widely used transonic flow codes. Unfortunately, Eq. (19) is a nonconservative equation; for
transonic methods using "shock capturing," it will not conserve mass. This is a problem of
mathematical consistency for which there is no simple fix. Furthermore, there is no significant
cost savings in using the nonconservative mass equation.

The above potential equations (both the conservative and nonconservative variants) are
usually referred to as "full-potential equations" because no terms are neglected in their for-
mulation. However, it is well known that many of the quadratic and higher order terms in
Eq. (19) must be very small, especially for flow over slender bodies. But these cannot all be
neglected for it is among these terms that the transonic nonlinearity is to be found. If we
neglect all the higher-order terms, with the exception of the quadratic terms in the streamwise
direction, we obtain the simplest approximate equations capable of predicting transonic flows.
These are the transonic small-disturbance equations, of which there are many variants, all
having the form

Att + BO1 t = F. + 0, + Cqyy + cross- and lower-order derivatives (20)

where the nonlinearity is contained in the streamwise flux F, which has the form ao., ± 0.
Equation (20) is not unique, and various modifications and additions have been made to
improve its stability and accuracy. This class of equations is often referred to as the "TSD"
(transonic small disturbance) equations. An interesting and useful feature of Eq. (20) is that
it is in conservation forrn-, which is a fortuitous outcome of the small-disturbance limiting
process. The next level of simplification is to eliminate all higher-order terms in Eq. (19),
which yields

- Ott= V2¢ (21)
a2

where a, is the undisturbed speed of sound. This is the linear compressible potential equa-
tion. A simple Galilean transformation of Eq. (21) yields the Prandtl-Glauert equation. A
transformation to a rotating frame does not produce such a simple result. Equation (21) has
been used to predict subcritical compressible rotor flows. Of course, this equation is also the
basis of many acoustic rotor analyses.

The final simplification is to assume an infinite speed of sound to obtain Laplace's
equation,

V2¢0 (22)
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which describes incompressible flow. To date, most rotorcraft computational development
work has centered on solving Eq. (22). The reason for this preponderance of work is the
importance of accurately predicting the wakes of helicopter rotors. Although helicopter rotors
operate deep in the compressible flow regime, the evolution of their shed wakes is basically
an incompressible problem. Another reason for the importance of the Laplace equation to
rotorcraft is that it is solvable by boundary-integral methods and can permit very rapid
solutions. This efficiency is vital for problems wherein the wake solution must be iterated
with solutions for the blade near-field aerodynamics and motion.

III. SOME IMPLEMENTATIONS OF THE FLOW EQUATIONS

The various numerical methods and codes used to solve the above systems of equations
constitute an enormous field that cannot be extensively treated in the scope of this paper.
Rather, this paper will be restricted to those methods that are representative of present work
or have high potential for engineering application.

As previously mentioned, rotorcraft CFD must follow a different path from its fixed-wing
counterpart because of its unique set of problems. The most obvious difference between the two
areas is the greater importance of potential flow methods for rotorcraft. One reason for this is
the intrinsic importance of unsteady aerodynamics to rotorcraft. (Even in fixed-wing unsteady
work, such as flutter prediction, one finds a predominance of potential methods.) Another
reason is the intrinsic importance of wake problems to rotorcraft. The viscous problems
encountered on rotorcraft are as important as (and more challenging than) those on fixed-
wing aircraft. Nevertheless, unlike in the fixed-wing field, the nonviscous-dominated problems
of rotorcraft aze not yet solved, and these require much of our present effort.

A typical CFD review would be mainly concerned with differential methods of solution
(i.e., finite-difference, finite-volume, and finite-element methods for solution of the partial-
differential equations). However, the importance of the wake problem to rotorcraft and the
difficulty in solving it with difference methods is such that boundary-integral methods must
also be considered. Therefore, the present section is divided into a discussion of both differ-
entied and integral methods. Differential methods will be discussed in terms of their most
common use, the solution of local blade aerodynamics. Integral methods will be discussed
in terms of their most common application, the solution of complex configuration and wake
aerodynamics.

BOUNDARY-INTEGRAL METHODS

The prediction of wake behavior is one of the oldest and most important problems in
rotor aerodynamics, and in many respects, it remains unsolved. Most rotor wake problems
are incompressible. These problems are also inviscid, to the extent that wake regions are
confined to thin layers that are convected by the global flow but are otherwise little affected
by it, somewhat like a noninteracting boundary layer.

Traditionally, wakes and configurations have been treated by means of boundary-integral
methods. The basis of these methods is the ability to superpose the various elemental so-
lutions of the Laplace equation-the source, the doublet, and the vortex. The actual choice
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of functions is arbitrary and their distribution is chosen so as to satisfy surface boundary
conditions (no flow-through) and the Kutta condition.

In recent years, Morino [1] has generalized the above approaches and derived an integral
fib, representation that is valid everywhere (including the body interior).

The basis for this approach is the second Green's identity

f OV2G V2 IL_ (3
G-G GV4)dv= GLP- a dS (3

where G is the Green's function, satisfying

V 2G = 6(x - x. ) (24)

and is the familiar unit source potential

G= 1 (25)
47rr

where r = Ix - x. 1. Green's identity can be written for any point in the flow field (including
the body interior) as

E(z')qa - O-I dS - f - dS (26)
an anjS an

where

E(x.) = 1, outside SB
1
S2' on SB 

(27)

= 0 inside SB

Note that the body is represented by a source and doublet distribution on its surface, and
the wakeis represented by a doublet layer. If x. is in the field (outside the body), Eq. (27) is
an integral representation for 0 in terms of the values of 0 and ao/an on the surface of the
body, SB, and of F on the surface of the wake, Sw. If x. is on the surface SB, Eq. (27) is
a compatibility condition between the values of q and a/0an on SB, and of F on Sw. Note
that 00/an on SB is knoin from the surface boundary condition, and that F on Sw is known
from the preceding time history. Therefore, Eq. (27) is an integral equation that may be used
to directly evaluate 0 on SB.

Once k on the body surface is known, Eq. (27) can be used to calculate €, and hence to
calculate the velocity and pressure anywhere in the field. In particular,

= = V.G - 0 (V.G) dS - Jffr(V.G)dS (28)

Thi.; equation permits us to calculate the velocity of the wake points and hence the geometry
of the wake at a time t. Note from Eq. (18) that F follows these wake points. Also, since the
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Kutta condition of pressure continuity implies that the trailing-edge circulation is shed into
this wake at every time step, we have conditions that determine this quantity at the upstream
edge of the wake.

The above equations are the basis for all boundary-integral methods. A variant of this
formulation [21 results from expressing Eq. (27) at the inside and outside surfaces of the body
and combining these to obtain

47roz =I ( 0 -b0)-a- 1)dS -27r(OP- Oi)± - 0 - a0) dSann JSBP / (29)

+ r- -(!ds

where SB - P indicates the exclusion of point P in the first integral. Equation 29 gives the
total potential at an interior point i as the sum of perturbation potentials that result from
normal doublet distributions of strength, (0, - Oi) on SB and (0, - 0 1) on Sw, and from a
source distribution of strength, (¢0/On)o - (O¢/On)i on SB. In principle, an infinite number
of combinations of doublet and source distributions will give the same external flow field, but
different internal flow fields. To render a unique combination of singularities, we can specify
one of the singularity distributions, or the internal flow. Two obvious choices of internal flows
are stagnation and undisturbed flow.

The above formulations are solved by discretizing the body surface and wake into suitably
conforming elements (or panels) and expressing the above equations as discrete summations.
The resulting system of linear equations constitutes a large, full matrix which is readily solved
by direct or iterative methods. These methods are usually referred to as "panel methods."
Panel methods vary according to the type of elemental solutions used, the manner of dis-
tributing them, and the type of discretization. The most common methods in use are "low
order" schemes, in which the singularity distribution is assumed to be constant on each panel.
"High order" methods assume a variation of source or doublet strength over each panel.
Some schemes entirely ignore thickness effects and represent wings or rotors as singularity
planes with no source terms. These methods are referred to as "lifting surface methods." An
even greater simplification involves the approximation of this surface as a single streamwise
element-that is, by "lifting line methods." The above equations represent solutions in terms
of source and doublet distributions. A lattice of line vortices can be shown to be equivalent
to an array of constant-strength doublet panels defined on the same vortex lattice. In "vor-
tex lattice methods," velocities are computed using the Biot-Savart law. The majority of
rotor/wake analyses are lifting-line and vortex-lattice methods.

Most recent boundary-integral methods have involved the use of panel methods. The
greatest impetus for these developmens has been the need for modeling complex aircraft
(usually fixed-wing) geometries. Perhaps the most widely used panel method codes, called
"VSAERO" [3, 4] and "PANAIR" [5, 6], are based on source/doublet representations such as
Eq. (29). VSAERO, in particular, has found wide use for rotorcraft component interaction
problems, because it models separation effects and free-wake convection. Figure 2 shows
typical VSAERO computations of a complex rotorcraft configuration [7]. The free convection
of the wing and rotor wakes of a V-22 can be clearly seen. A comparison of PANAIR and
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VSAERO for a V-22 in airplane mode is made in Ref. [8]. This latest generation of integral
codes has been driven mainly by fixed-wing needs. Rotor hover problems, however, have not
been extensively treated by panel methods.

Most panel method codes have been designed for fixed-wing applications and require
only a specified wake geometry. However, for low-speed flight, the wake induction becomes
increasingly important compared to free-stream convection. For hovering helicopters this
wake induction is the dominant flow consideration, especially because the rotor remains close
to its own wake. In fact, helicopter wake problems have mainly been treated by vortex lattice
methods using a lifting-line representation of the blade.

The hover problem is very sensitive to the accuracy of the wake computation. This places
a stringent requirement on the wake panel or element modeling density. In order to reduce the
size of the wake grid, various efforts have been made to use higher-order geometry definitions
and/or integration of the wake elements. The most current example of this is the curved
vortex elements of Bliss [9, 10]. In this work every three wake points on a vortex line are
used to define a locally parabolic-shaped element whose induced velocity is described by an
analytic expression (Fig. 3). The accuracy of this element is such that far fewer points are
required to resolve the wake than if a series of straight-line elements were used.

The physical accuracy of the hover wake model is also a critical item. One physical
wake feature that is uniquely important to rotor hover wake modeling is the local self-induced
velocity that results from wake curvature. A curved-line vortex segment contains a logarithmic
singularity that does not occur in reality because real vortices have non-zero core radii. But the
wake settling rates are a function of the core size. Although this is a logarithmic function (i.e.,
not strong) it is important for hover. It has been shown [11, 12] that the effect of this core size
can be accounted for by incorporating an appropriate cutoff distance in the local Biot-Savart
integration over the curved element (Fig. 4). Most wake analyses use straight-line vortex
elements only. The contribution at any wake collocation point from its two adjacent vortex
elements is therefore zero. This corresponds to a cutoff distance of one wake-element interval,
and is too large. Such refinements are not required for computations for many advancing
rotors or fixed-wings, because the free-stream convection overwhelms these effects.

Although free-wake computations for hovering rotors have been performed for many years,
the most reliable computations have tended to be those that use empirical wake-geometry
data [13, 14, 15]. These codes are also extremely fast, because they do not require inflow
computations on the wake. Such codes can produce good thrust/power polars when a suitable
wake data base is available (a good airfoil data base is also required). However, there is
a fortuitous element in this approach, since these codes often do not predict the thrust-
vs.-collective-pitch curves accurately. The earlier free-wake codes did not predict the wake
geometry well and did not give good performance predictions. More recent free-wake codes
are now beginning to produce good results, because of better numerical techniques that more
accurately model the physics. The code EHPIC [16] is one that is producing good wake and
performance predictions. It is a vortex-lattice, lifting-surface code that uses the self-induction
model, curved wake elements, and a unique wake-relaxation scheme, which obviates many
instabilities.

A recent paper by Felker et al. [17] gives good examples of current free-wake capabilities
using the EHPIC code and data from many tested rotors. Figure 5 shows a fairly typical
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comparison of measured and computed tip-vortex geometries and lift/power polars for an
S-76 rotor. The comparison of tip-vortex axial settling rate shows some differences,but the
distance of closest blade/vortex approach is close. Furthermore, the predicted and measured
power are within 3% of each other. This example is shown here only because it involves both
wake and performance data for a modern rotor. The level of agreement between data and
computation is good. Another widely used code is HOVER [18], which also uses a lifting-
surface, free-wake analysis. HOVER also employs a local wake curvature treatment.

Vortex-lattice codes are also widely used for forward-flight wake analyses. The Scully
vortex-lattice model [19] is incorporated in the CAMRAD comprehensive rotor analysis code
[20] and is probably the most widely used of such codes. The model uses a network of
streamwise vortices (generated by the bound-circulation, spanwise gradient) and spanwise
vortices (generated by the time rate of change of bound circulation). An alternate vortex-
lattice model has also been developed that uses the Bliss-curved vortex elements (Fig. 6).

These advancing rotor applications tend to be used with lifting-line blade models. These
blade models use measured airfoil data to obtain profile drag and pitching moments. However,
this approach precludes the treatment of 3-D, unsteady transonic characteristics. It also
requires empirical models for stall. More accurate treatment of the blades requires the use of
differential CFD methods.

DIFFERENCE METHODS

The computation of the rotor-blade aerodynamics entails the treatment of various nonlin-
ear effects, the most common of which is transonic flow. The simplest equations for treating
transonic flows are the nonlinear potential equations. Because these equations are nonlin-
ear, they cannot be superposed and it is necessary to discretize and solve them directly. We
shall discuss this process only for potential methods. However, the basic process has much in
common with that for the more complex flow approximations, such as Euler and Reynolds-
averaged Navier-Stokes.

The first step for helicopter computations is to transform the equations to a translating
and rotating coordinate system fixed to the blade,

r' = Ut + lflt x r (30)

where r' = (x', y', z') and r - (x, y, z) are the inertial and body-fixed coordinates (Fig. 7), and
U', and .l are the translational and angular velocities of the rotor. Under this transformation,
the conservative potential equations, Eqs. (16) and (17), become

Pt + V. [pV] = 0 (31)

and

P/P. {= 2 1 [+(V2 - V4) (32)

where

V = V" + Vo (33)
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is the local velocity in the blade-fixed frame and V,, = Uo, + f) x r is the local free-stream
velocity seen by an observer in the rotating frame. Of course ¢, being scalar, is unchanged
by the coordinate transformation. But in the blade-fixed frame (Eq. (33)) it appears as
a perturbation about the free-stream velocity, V,,. Note that, since Vo, is rotational, we
cannot combine it into (or define) a "full potential" in the normal fixed-wing sense.

Equations (16) and (17) are commonly written for a generalized, moving coordinate sys-
tem , ?, C, t (fig. 8) as

Ot(p/J) + 09 (pU/J) + O,(pV/J) + a( (pW/J) = 0 (34)

where U, V, and W are contravariant velocity components, and J is the Jacobian of the
coordinate transformation. Bernoulli's equation is similarly expressed in general coordinates:

SP0 -2 let + (U + )q + (V + 7t) bi+ (W + C } (35)

In this formulation, the blade motion is specified by the coordinate terms t, lit, (t. Equations
(34) and (35) represent an excellent formulation of the potential problem because they are
conservative, compact, and geometrically general.

By contrast, under a rotational and translational transformation, the nonconservative full-
potential equation (Eq. (19)) becomes (in Cartesian coordinates for a rotor in pure edgewise
motion)

Ott + 2V¢5t + 2V.czt = (a2 - V2 )0,. + (a2 - V2 )0,, + (a2 - )OY
- 2V.VyoAy - 2VV.q¢ - 2VV¢y. (36)

+ (2x - 2fMU .cos *)O x + ( 02z + 2 QUoo sin 0) 0,

which cannot be put in conservation form. The small-disturbance equation retains the form
shown in Eq. (20) under a rotational transformation.

The first differential CFD methods developed were mainly concerned with the small-
disturbance equation and much rotor work is still done with these techniques. This work uses
finite difference methods, in which the partial derivatives in the basic equations are directly
approximated by differences in order to derive systems of linear equations. Other discretization
methods have since been developed, notably finite-volume and finite-element methods. These
methods also work well, the finite-element methods being the most recent. The following
discussion will focus on the finite-difference approach.

In order to illustrate basic ideas and issues, we will consider a simple problem which
is a paradigm for all finite-difference, potential methods. Consider a simple 2-D transonic
small-disturbance equation (see Fig. 9)

/kXZ + 0YY = oxt (37)

in which
0 = (1-_ M2) _ (1 +')M2
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This equation models low-frequency flows that result in large shock hysteresis. To complete
this problem we require boundary conditions and the Kutta condition for pressure continuity.
The latter is satisfied by convecting the trailing-edge circulation using

rt + Uoor, = 0 (38)

The body no-flow-through condition is specified on a mean surface (y = 0) and therefore takes

a transpiration form
OY. -- Vo, A (x It) (39a)

on the upper side of the mean surface and

OYJ = Uoofl,(X,t) (39b)

on the lower side of the mean surface, where the body geometry is given by y = f. (x), ft (x)
for the upper and lower surfaces. Various far-field boundary conditions can be used. For an
unsteady problem the best condition to use is a nonreflecting, first-order wave equation which
permits no inward propagation from the far-field boundary. However, the specification of
nonperturbed flow is very common and simple. Therefore we will specify that at the far-field
boundary

b=UooX (40)

In order to solve this system of equations (Eqs. (37-40)) we construct a Cartesian grid and
approximate the various partial derivatives by differences. The following difference approxi-
mations will now be applied to Eq. (37):

1st backward difference in x, 0- V__0 (0i - Oi-,)/Dx

1st forward difference in x, O A (q$-1 -A4)/Dx

2nd backward difference in x, 0,; x VxV.,¢ = (€i - 20i_1 + Oi- 2 )/Dx2  (41)

2nd centered difference in x, Ox. , VxAx¢ = (€i-1 - 20i + Oi_ 1)/Dx2

where Dx is a streamwise grid interval. These expressions are easily derived from Taylor
series. Modifications of these difference approximations are required for points adjacent to the
boundaries. For instance, for points adjacent to the mean airfoil surface the normal second
derivatives are expressed as

Oyj = (A voj - Oy)/Dy

= (OJ+l - Oj - DyUof' (x))/DY2  (42a)

on the upper surface, and

Oyy, = (DyU~of[(x) - 0j + Cj-1 )/Dy2  (42b)

on the lower surface. The bound and shed circulation of a lifting problem require branch cuts
(potential jumps or discontinuities) in the wake. Adjacent to these branch cuts, the normal
second derivatives are expressed as

Oyy, = (Ayqj - Vykj)/Dy

= (Oj+l - 20j + Oj_, - F)/Dy2  (43a)
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above the cut, and
O) yyj = (0J+1 - 2 0J + 0)J-1 - F)/DY2  (43b)

below the cut. These expressions for differencing across the cut are easily obtained by com-
bining a Taylor expansion for 0 with the known discontinuities in € and 90/an (r and 0,
respectively). The value of Fi is found by solving a discretized form of Eq. (38).

'An instructive (but inadvisable, for stability reasons) discretized form of Eq. (38) is

• - --1

At -AX 0 (44)

which is solved by a simple downstream marching process,

rn+ 1 =(a)!' + a (45)

where a = UAt/Ax. Equation (44) evaluates the spacial differences at the previous time
step, n, and Fn + is solved as a simple algebraic function of known quantities at the previous
time step. Such a scheme is referred to as an "explicit" method. For a > 1, it is unstable.
Note that for a 1 we have +l -"-, -- F-_ 1. This particular choice of grid amounts to physically
convecting individual fluid particles from point to point, which is Lagrangian convection, and
numerical dissipation does not occur. In general, however, grids cannot be so chosen and
dissipation does occur. Such dissipation is unimportant for problems in which circulation
merely convects away from the body, as in this example. However, this is an important
matter for recirculant flows such as the hover problems mentioned in the previous section.
There, the rotor boundary-integral methods treated the wake by Lagrangian convection. This
type of convection is not done with current differential CFD methods (potential, Euler, etc.).
An additional feature of potential-flow CFD is that the wake differencing (such as in Eq. (43),
which is the universal approach) confines the wake to a grid plane. (We shall later show that
this is not necessary.) By contrast, a conventional Euler solver, having no potential jump,
convects vorticity freely and naturally; but it still does not solve the dissipation problem.

In our simple problem, we first consider a subsonic flow-that is, i3 > 0. A discretization
of Eq. (37) that is suitable for subsonic flow is

Vxo n + l - h [OVX4 n + ' + VVA 4)n + 1 ] = VX4 n  (46)

where h = Dt. Note that the entire array of unknowns [On+1 must be found simultaneously in
a large matrix inversion. Such a scheme is called "implicit" and has the advantage of having
no linear stability restrictions (unlike the above explicit method). However, the price for this
stability is the inversion. The left-hand side is nearly Laplacian, and can be inverted iteratively
by various standard methods. Furthermore, since On+1 and on are close, the iteration process
must be very fast (requiring as little as one iteration for some methods). However, a faster
and more usual approach involves an approximate factorization of the left-hand operator into
a more easily inverted form. For Eq. (46) such a factorization is

(I - 3hAx)(V, - hVyAy)¢ n + l = V_4)'n + Oh2AxVYAY~ n  (47)
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The new right-hand term is the factorization error, which is evaluated explicitly at the
previous time step. Equation (47) is very easily solved as a two-step process:

(I- -3hA,)¢*- V.¢ n + ,3h2AxVyAy4 n  (48a)

(V, - hVAy)¢ n + l "* (48b)

First the upper bidiagonal inversions (Eq. (48a)) are performed on each y=constant grid
line. Then the lower triangular matrix (Eq. (48b)) is solved on each x=constant grid line.
These are very simple and well-behaved processes. This often-used procedure is referred to as
"approximate factorization" (AF). Many types of AF are possible, and it can be shown that
the well-known ADI (alternating direction implicit) method is a form of AF. For supersonic
flows (when 0 < 0) the difference equation (Eq. (46)) is unstable, and it becomes necessary
to replace the streamwise term by a backward difference, such as Oxx VxVxo. The first
successful transonic potential codes employed a simple switch in the differencing process (based
on the sign of 3) to treat mixed supersonic-subsonic flows. Almost all subsequent transonic
algorithms have employed some related forms of upwind biasing.

This discussion is meant only to expose the main issues and must leave out many im-
portant related issues. For instance, the above discussion uses a nonconservative equation for
simplicity. However, the basic equations and their difference forms must remain in conser-
vation form in order to properly capture shocks. The construction of good algorithms is a
very extensive field, requiring much work on differencing, stability, accuracy (including con-
servation), inversion methods, boundary conditions and grid generation. A review of these is
beyond the scope of this paper. However, this example has exposed some of the salient issues
and terminology for these solution methods. With this background, we will now discuss some
of the actual codes that have been developed.

Because Eqs. (20) (a TSD equation) and (36) (a nonconservative full-potential equation)
have the same general form, they share the same general solution methods. Equation (20) is
stably discretized using a "Murman mixed difference scheme" (i.e., the previously mentioned
central/backward differences in the subsonic/supersonic flow regions [21]) in the streamwise
direction. The counterpart to the Murman scheme for Eq. (36) is the "Jameson rotated
method," in which mixed differences in all directions are used [21]. Equation (20) has been
implemented in the finite-difference rotor code (FDR) [22, 23] (which, in spite of the name,
is conservative) which uses an ADI solution scheme. A refined version of this code called
TSP [241 is the best-developed and most heavily used small-perturbation code for rotors.
The nonconservative, full-potential equation (Eq. (36)) has been implemented in several rotor
codes. The first such implementation is the steady code ROT22 [25]-a derivative of FL022,
which uses a successive-line over-relaxation (SLOR) inversion scheme. Another steady code
for Eq. (36) is TFAR1 (26], which uses an approximate factorization solution method (rather
than SLOR). The fully unsteady form of Eq. (36) is implemented in the code TFAR2 [27], a
derivative of TFAR1.

The above codes are limited either by small-disturbance or conservation considerations.
The implementation of a conservative full-potential method is complicated by the inability to
either directly eliminate p (which destroys the conservation form) or to stably solve Eqs. (34)
and (35) as a two-equation system. The spacial terms in Eq. (34) present no problem, as these
are easily treated using central differences (stability being maintained by upstream biasing of
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density, with density evaluated at the previous time step or iteration). The real problem is to
express the term pt in a form that does not depend on p at the new time step, n + 1. This
can be achieved [28, 29] by expanding p1+l as

pn+1 . + P (49)

where Op/o9 is a differential operator obtained from Bernoulli's equation. When Eq. (49) is
substituted into the discretized form of Eq. (34) there results an equation of the form

VtVt¢n+l + ¢nVVt¢n+(

± ~ + ± VOn~~l) = C'n (50)"-+ V,(pnA¢ n+ l) "-+ Vrt(pnA,,On + l) +t V,(On A n ) -" n

This equation can be considered to be a hybrid of Eqs. (34) and (36). The spacial flux
operators correspond to those in the conservative full-potential equation, Eq. (34). However,
the time derivatives have the same form as the nonconservative time terms of Eq. (36) do. The
resulting conservation error is cancelled by the term C', which is a conservation correction
term evaluated at time n. This formulation was first implemented in a fixed-wing code called
TUNA [29]. A subsequent derivative of this code called FPR [30, 31] is tailored for rotor
applications. These codes both use an approximate factorization inversion scheme. A similar
rotor implementation called RFS2 [32] uses a strongly implicit procedure for matrix inversion.

All of the above-mentioned rotor codes (ROT22, FDR, TSD, TFAR1, TFAR2, FPR,
RFS2) have been used in industry. ROT22 is among the most-used because its simplicity
and robustness do not put great demands on the user. This code is probably best used
for initial high-speed-configuration comparisons (those based on planform and profile, for
instance). However, its shock errors (a result of being nonconservative) and its inability to
handle unsteady effects limit its accuracy and load-prediction ability. In the U.S., FPR is
probably the most available and highly developed, both from a technical and from a user
viewpoint, and it has a sizable user community.

At this point it is useful to demonstrate some of the capabilities of differential CFD
methods to predict the local blade flows on helicopter rotors. This will be done by comparison
of computed flows with results from experiments that were designed for this purpose.

Surface pressure data from nonlifting rotors validate the basic ability of codes to predict
transonic flows, free from the complications of wake effects. These tests are usually performed
on advancing rotors in order to avoid the wake buildup that would occur on a nonlifting hover.

Probably the most extensive surface pressure model rotor data base has been acquired by
ONERA [33, 34, 35]. This data includes nonlifting and lifting data for two- and three-bladed
rotors with a variety of blade profiles and planforms. Figure 10 shows an early nonlifting
computation of the pressure variation on two surface-pressure transducers performed with a
2-D small-disturbance code. Subsequent 3-D computations compare equally well with the
data. However, the point of discussing an inboard 2-D computation is to show the importance
of transonic unsteadiness without any rr'tigating 3-D influences. This unsteadiness is seen
in the asymmetry of the pressure about the V) = 90' azimuth. Computations for a higher
speed case in which the steady and unsteady full-potential codes TFAR1 and TFAR2 [27]

18



were used are shown in Fig. 11. The inadequacy of steady computations is clearly shown in
this comparison.

Figures 12 and 13 show a nonlifting computation and data comparison [36] that is unique
in that it employs optical methods rather than the usual pressure instrumentation. Figure
12 shows a series of interferograms which are obtained from holograms produced for a range
of rotor/laser-beam orientations. These interferograms can be used to reconstruct nearly the
entire pressure field around the rotor. Figure 13 shows these reconstructed pressure fields at
0.08 chords above the rotor and at several radii. Also included in Fig. 13 are a comparison
between small-disturbance computations and laser velocimetry results. Although several un-
explained differences are seen, the overall comparison is quite good. Such comparisons have
demonstrated the ability of CFD methods to predict pressure fields away from the surface of
the rotor-an essential for high-speed acoustics.

Nonlifting experimental data have also been used to validate the ability of codes to predict
high-speed-profile power and transonic-drag rise. Figure 14 shows a comparison of computed
and measured torque for a nonlifting two-bladed rotor with a NACA0012 airfoil. The computa-
tion [37] was performed using both the standard FPR code and a variant with a nonisentropic
correction. This computation also used a Nash-MacDonald boundary layer model. The torque
was obtained by integrating the skin-friction and surface pressures. The transonic drag diver-
gence is well predicted, whereas the purely isentropic computation overpredicts the torque at
the highest tip Mach Numbers.

These and many other related validations have demonstrated that potential methods can
predict those basic blade flows that are essentially inviscid. This means they can predict
nearly all flows except those that involve retreating-blade stall. Much remains to be done
on these problems, especially on applying boundary-layer corrections to improve drag- and
pitching-moment calculations. Another concern is the manner of combining these near-blade
computations with the wake-aerodynamic models to obtain a global rotor-flow analysis.

IV. THE COMPUTATION OF COMPLETE ROTOR FLOWS

The previous section summarized some of the last twenty years of CFD code development
related to rotorcraft. There now exists an extensive arsenal of hard-won computational tools
with which to attack rotor flow problems. However, rotor behavior involves so many interre-
lated phenomena that the effectiveness of any one analysis can be difficult to judge. The need
for complete analyses is obvious and has been addressed elsewhere in the context of comprehen-
sive code development. These comprehensive codes have used a variety of boundary-integral,
analytical, and empirical aerodynamic methods. An important requirement for such methods
is that they be fast enough to be an integral part of a total vehicle analysis. The following
discussion addresses the capability of CFD for modeling the total rotor aerodynamics, and the
methods for at least including CFD in a comprehensive rotor analysis. The first part of this
discussion will involve the development of hybrid methods in which various wake and blade
elements are assembled to produce a total aerodynamic analysis. An additional section will
discuss some methods for a unified CFD analysis of blade-wake flow systems.
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HYBRID METHODS

Figure 15 illustrates the basic computational problem for a hovering rotor. The behavior
of a hovering rotor is governed by its system of shed vortices and vortex sheets and by the
local blade flow. Superimposed on the blade (Fig. 15) is a representation of a typical grid
used for computing local rotor flows. The grid extends about 3-10 chordlengths from the
blade in all directions. The computation of the flow in this grid differs from that in the simple
example in Section III in that many of the shed vortex and sheet elements pass through this
grid and come physically close to the blade. These circulatory elements must be inserted into
the near-field computation. After this is done, we still have an incomplete problem with this
type of blade-oriented grid. Most of the rotor wake lies outside of such a local grid and must
be accounted for.

The first treatment of hover problems with CFD methods involved the use of a small-
disturbance potential equation. The representation of a system of tip vortices passing through
the grid was made by specifying a system of additional constant-strength branch-cut sheets
(see Fig. 16) using the same logic which is already required to specify the rotor trailing sheet.
The edges of the sheets are chosen to coincide with tip-vortex locations. Note that in Fig. 16
the additional branch cuts are shown to be vertical. Actually the sheet orientation is irrelevant
because it is only the edge of a constant-strength cut that represents the vortex. The use of
branch cuts to specify shed vortices is especially easy for a Cartesian or "H-type" grid (which
all small-disturbance methods use) because the tip vortices are nearly parallel to the grid
lines. This approach cannot easily be used to specify an inboard vorticity sheet, however,
because it would not usually coincide with a coordinate plane. Fortunately these sheets
are weak compared to the tip vortices and can be excluded from the near-blade problem.
But these sheets and all the wake elements not contained in the grid induce much of the
inflow and need to be treated. In Ref. [38] a small-perturbation near-field computation was
coupled to the boundary-integral code HOVER [18]. The coupling involved a modification
of the HOVER inflow computation (the Biot-Savart integral) wherein all the wake elements
contained in the grid were excised to produce a "partial inflow" which was then applied to
the blade surface boundary condition as a "partial angle of attack." This resulting blade-load
distribution provides the wake-circulation distribution required by HOVER. HOVER also used
an experimentally measured prescribed wake geometry as an input.

Clearly the main issue in hybrid methods is the manner of communicating the wake data
to the CFD grid. For convenience, in future discussions we will refer to the present branch-cut
approach as "gamma coupling." The use of a surface partial inflow is referred to as "alpha
coupling." The above approach used both methods.

Although gamma coupling is simple when a vortex can be aligned with a grid line, it is
not easily applied to arbitrary grid/vortex orientations. One possible approach would be to
use adaptive grids; but there are simpler ways to treat the problem.

One alternate approach involves modifying the flow equations. We can represent the flow
velocity as

V= .+ Q+VO (51)

where V. is the undisturbed free-stream velocity that results from translation and rotation,
and Q is an induced flow field. In this case Q is the velocity induced by the additional wake
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elements in the grid. Substituting Eq. (51) into the continuity equation (Eq. (1)) using an
inertial frame for simplicity, we have

Pt + V.(pV ) = -V. pQ (52)

It can be seen that the only effect on the mass equation is to add a known forcing function
to the right-hand side. Note also that Q can be a rotational field with no loss of validity of
Eq. (52). However, the Bernoulli equation would no longer be valid in these rotational regions.
But these regions tend to be thin and their primary importance is their circulation. Pressure or
density variations in these regions have no global effect. This velocity decomposition approach
was first used by Steinhoff [39, 40]. We will refer to the use of an induced velocity field to
specify wake systems as "Q coupling." Two different Q-coupled hybrid hover analyses will
now be described.

Q coupling has been used to hybridize the FPR and HOVER codes. Because FPR uses
a spanwise stacked "0 grid," the branch-cut mode of vortex representation is not feasible.
However, the velocity decomposition approach (Q coupling) has been successfully implemented
[31]. In this analysis, the effect of the far wake was analyzed using a partial angle-of-attack
approach (alpha coupling). The close tip-vortex elements (those passing through the grid)
were approximated by infinite straight vortices, which then defined the Q field. (Straight
vortices are a reasonable approximation and obviate a Biot-Savart computation). Of course
Q coupling also implies its own surface inflow modification because changing the velocity field
entails a corresponding change in the no-flow-through condition.

Q coupling has also been employed by Egolf and Sparks [41] using the nonconservative
code ROT22. This hover implementation differs from the previous analyses in that the effect
of the total wake is specified on the entire outer computational boundary, which eliminates
the need for a partial inflow on the rotor surface. This has the advantage that it obviates any
need to modify the inflow prediction program. Another interesting feature of this work is that
it employed an adaptive grid, which permitted the shed wake (from the trailing edge to the
rear grid boundary) to convect freely. This work also uses a local line vortex representation
to define a Q field.

The above discussion presented a variety of finite-difference rotor computations including
an extensive self-induced wake system. The described analyses are really "pre-engineering"
pilot methods, intended to demonstrate the feasibility of combining difference methods with
our present integral methods; and they require validation data which can provide both wake
geometry (for inflow prediction) and high-speed blade surface pressures.

Toward this end, an extensively pressure instrumented model rotor was hover tested
[42] by the (then) U.S. Army Aeromechanics Laboratory. Simultaneous measurements of
the wake geometry (depicted in Fig. 17) provides the tip-vortex-location information that is
needed for computational vortex-modeling studies. This data has been studied using the three
previously mentioned hybrid analyses, i.e., the small-perturbation approach which combined
gamma and alpha coupling [39], and conservative (FPR [31]) and nonconservative (ROT22
[41]) full-potential schemes using Q coupling. These methods all assume that the vortex
strength is equal to the maximum blade bound circulation. Figure 17 shows a comparison of
all three approaches, with the data. Overall, there is a remarkable agreement between the three
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approaches. In all three methods the predicted shock location is slightly aft of the measured
location. This discrepancy is probably a result of the isentropic flow approximation [38]. The
agreement between the conservative and nonconservative predicted shock location is somewhat
surprising and can result from any number of computational details. The nonconservative
approach almost always produces a weaker shock than its conservative counterpart does. The
important point is that the basic soundness of the blade/wake aerodynamic matching process
is shown. Accordingly, it appears that we should be able to effectively combine our finite-
difference blade computations with existing boundary-integral codes. Such analyses could
easily include fuselage-induced upwash effects. Of course, in order for the analysis to be
meaningful, the difference portion will have to be able to predict drag.

The high speeds involved in the previous hover example are not operationally realistic,
and transonic flow is not a major hover consideration, although it does occur. In forward
flight, however, such tip speeds are common and the use of transonic flow models becomes
important. In principle, the use of a near-field wake representation (one contained in the grid)
combined with a far-field model should permit complete forward-flight analyses. However, the
practical difficulties of such a computation are much greater than those for hover. The fact
that the wake/blade orientation is time-varying appears to preclude the use of a branch-cut
wake representation. Furthermore, the use of velocity decomposition (Q coupling) requires a
Biot-Savart integral for every grid point (or for enough grid points that interpolation can be
used) and for every time step-a rather expensive proposition with present techniques. Also
the straight-vortex model used for hover is probably not a good model for curved vortices in
forward flight. For these reasons a full forward-flight, velocity-coupled computation has not
yet been performed, although it is obviously possible.

There are also physical reasons to defer the use of a specified complete wake model in
the current CFD codes. First, the wake structure of even high-advance-ratio rotors is not well
known. At high, advance ratios, the wake can be weaker (especially on the advancing side)
and farther removed from the blade. Furthermore, the wake-induced inflow can be a small
percentage of the total inflow. It thus becomes reasonable to use a simpler wake model for
many flight conditions.

At the present time, therefore, forward-flight hybrid computations have been performed
only on the basis of partial-angle-of-attack or alpha coupling (see Fig. 18). That is, the wake
elements that pass through the computational grid are not modeled by means of their spacial
velocity fields. Instead, their inflow is accounted for only in the body boundary condition as
a partial angle of attack. This angle of attack is still "partial" because any finite-difference
computation includes a circulation sheet emanating from the trailing edge. The portion of the
wake that corresponds to the grid branch-cut region must be excised from the Biot-Savart
integration in the outer boundary-integral wake model. Failure to perform this modification
would result in a double accounting for the shed wake circulation.

In computing these advancing blade/wake flows it is convenient to include all geometric
(twist), blade motion (flapping and deformation), and inflow effects in this partial angle of
attack. A fixed untwisted grid is commonly used and the partial angle of attack is specified by
applying a flow-through (transpiration) boundary condition on the surface. The alternative
(for a code with a body-conforming grid) would be to generate a new grid (at each time step)
that included the partial angle as an effective twist. On this grid, a no-flow-through boundary
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condition would then be used. This approach is much more difficult, however, and does not
significantly increase accuracy.

Up to this point we have referred to hybridizing only in relation to different aerodynamic
models. However, we can only confine our discussion to aerodynamics when we know the
boundary conditions, and for an advancing rotor we do not know the blade motion beforehand.
Instead, we typically know the primary (lift and propulsive) forces and must then perform an
iterative aerodynamic/dynamic/elastic computation to find the control inputs (e.g., cyclic and
collective) that produce these forces. This is referred to as the rotor trim problem. The end
result of the trim process is a knowledge of the blade motion. A typical trim process will use
2-D airfoil table look-ups to provide the local blade aerodynamics around the entire azimuth.
Such a process can require the computation of about 10 rotor revolutions to converge to a
solution. This is a fast process with look-up tables, but it is clearly impractical to directly
replace the look-up process by CFD solutions at each time step. The convergence of present
trim procedures is such that CFD solutions cannot be placed in the trim loop.

A solution to this problem that still uses present tabular methods is to solve the local
rotor problem outside of the trim loop. This difference solution is then used as a brse about
which to find corrections resulting from the trim process. Therefore the lift is computed as

CL (C) = CLCFD(aod) + CLw.ble (Ce) - CL,.be (aold) (53)

Trim lift correction

where a and aold are the angles of attack from the current and previous trim loops, respectively.
The solution has converged when a - aold and the lift correction vanishes. At this point the
finite-difference computed lift is fully consistent with the rotor inflow and motion. This scheme
appears at first to be a slight retreat from the goal of obviating table look-ups. However, the
tables affect only the convergence rate, not the final answer.

This forward-flight matching process was first performed [43] using a small-disturbance
code (FDR) and the comprehensive code CAMRAD. Currently, the same matching is regularly
performed using the conservative full-potential code FPR. The matching of the CAMRAD
and FPR codes is summarized in Fig. 19. The process is started by obtaining a trimmed
nonuniform inflow solution (with a full vortex-lattice-modeled wake) with the lift obtained
totally from airfoil tables. This is the normal operation of CAMRAD except that partial
angles of attack are also computed. These partial angles provide the necessary boundary
conditions to obtain an FPR solution for the lift distribution. The program then alternately
computes new modified trim solutions and FPR solutions, until the lift correction vanishes.
This is an efficient scheme since it does not do the most time-consuming tasks (influence
coefficients and finite-difference computations) in the innermost trim loop. The convergence
of this process is very fast. Stiff rectangular rotors frequently give good results in one iteration.
Soft rotors with varying planforms have required about three iterations.

An example of such a computation is illustrated in Fig. 20, which shows a comparison with
one of the ONERA three-bladed test cases. For this case, the tip rotational Mach number
is 0.628 and the advance ratio (ratio of forward speed to rotational sp, 1) is 0.387. The
airfoils used were S-130XX (a variant of the NACA five-digit family). This computa"on was
accomplished using the coupled FPR and CAMRAD codes [44]. Overall, the agreement of
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the data and the computation is good. However, the computation somewhat overpredicts
the upper pressures early in the first quadrant (0' < V) < 900) and the lower surfaces in the
second quadrant. The shock location and strength seem to be well-predicted throughout the
computation.

The previous cases involved stiff, articulated model rotors, in which the blade motion (ex-
cept for rotation) was almost pure flapping with very little elastic torsion or bending. Full-scale
rotors tend to be much softer than the above-mentioned model blades, and elastic deforma-
tions can be important. The first published computational/experimental data comparison for
an actual flight vehicle involved an Aerospatiale SA349. A typical data/computation compar-
ison [45], performed using CAMRAD/FPR, is shown in Fig. 21. Although this comparison
of surface pressures is promising, the differences between the computed and measured lift
actually constitute a significant load error. The resolutions of these problems will probably
require improvements in our structural, wake, and coupling models. Nevertheless, the present
coupling has effectively integrated 3-D, unsteady transonic flow analysis into the comprehen-
sive rotor modeling process. These codes constitute a valuable analysis-and-advanced-design
tool in the hands of a knowledgeable user.

One of the areas that requires further review is the basic notion of the partial angle-of-
attack coupling. The idea of a chordwise constant inflow is only valid if all the wake elements
causing tha. inflow are well-removed from the blade (i.e., by more than a chord). Recent
studies of blade/vortex interactions (nearly direct impingement) have shown good correlations
with BVI leading-edge pressure data merely by using a chordwise-varying inflow [46]. Other
computations show significant differences between the use of a chordwise-varying inflow and
a full Q-field representation of the vortex [47]. (See the related BVI discussion in Section
V.) Perhaps the most significant element of these studies concerns the effects of unsteadiness.
The present angle-of-attack (or chordwise-constant inflow) coupling lumps all unsteady effects
(except for Mach-number variation) into a single surface inflow. No differentiation is made
between inflow and flap/pitch variation. It is well known that the response to these two types
of excitation is not the same. Recent computational correlation studies with in-flight data
[48] indicate stronger discrepancies in the unsteady-flow model than previously expected. Of
course, such discussions would be moot if we had a unified representation of the rotor/wake
system.

UNIFIED FLOW METHODS

The rotor and its wake constitute a tightly knit system, and it is natural to solve it as
a single problem. This has been done for years using boundary-integral methods. The need
to include compressibility has driven efforts to do the same with differential methods, using
a single grid that encompasses both the blade and the wake. This work has excluded con-
ventional potential methods because of an assumed inability to convect the wake freely. Thus
potential methods had been relegated to use as local-blade-flow solvers in hybrid analyses,
and there have been various attempts to use conventional Euler solvers for unified CFD rotor
modeling.

Euler solvers have not been discussed to this point. It suffices for present purposes
to mention that many such solvers now exist. Most use the finite-volume approach and an
explicit, centered-difference solution scheme, which employs user-specified dissipation terms to
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ensure stability [49]. Although these methods require "tuning" of dissipation terms (required
for stability), they are the most efficient Euler solvers. Another class of Euler solver uses
implicit, upwind-differenced schemes that require no tuning and appear to be less dissipative.
Several of these Euler methods have also been used in hybrid computations, in the manner
described in the previous section [50].

The first unified blade/wake Euler computation of a hovering rotor was performed by
Kroll [51] using a centered explicit solver. This computation modeled the hover experiment of
Ref. [42] using an "0-0" grid fixed to a blade and large enough to encompass a considerable
portion of the wake. A problem found with this computation was that the wake was dissipated
to such an extent that the induced inflow was underpredicted. That dissipation was a problem
was shown by performing a grid sensitivity study. With c, .rse grids the lift distribution was
badly overpredicted, especially inboard, indicating an underprediction of inflow. Refining the
grid reduced the lift, but not sufficiently to compare well with the experimental data (Fig. 22).
A comparison of the computed pressure distributions with the data was very favorable at the
tip, however. Similar efforts by Kramer et al. [52], and Chen and McCroskey [53] used an
upwinded Euler scheme to make comparisons with the same hover data, with similar results
(very good agreement with the outboard data, but a tendency to overpredict the lift inboard).
Chen's results showed only a slight grid-refinement sensitivity. This was probably a result of
the far grid (away from the blade) being so stretched (to avoid excessive computing time) that
the vortex was still unavoidably dissipated. This vortex dissipation can be seen in Fig. 23,
which shows computed vorticity contours at various distances from the trailing edge. With
present algorithms, the cost of such Euler computations is very high, and it is prohibitive
with a grid which is dense enough to eliminate the dissipation. The use of unified rotor/wake
computations thus seems remote, but new developments using potential methods as part of
the solver could change this situation.

Steinhoff and Ramachandran [54, 55, 56] have recently re-examined the potential ap-
proach and arrived at a new method of specifying the shed circulation such that it becomes
free to convect through the grid. The heart of their approach is the use of velocity decompo-
sition (Eq. (51)) which was cited in connection with the earlier discussion of hybrid methods.
The central idea of this work is that when a Q field is used to represent a wake, any form of
velocity field Q can be used as long as V x Q = w, where w is the vorticity distribution for
the wake sheet. This new formulation thus entails spreading the circulation sheet to give it
an w distribution, and then finding an appropriate Q, which defines w. This Q then defines a
forcing function for the mass equation (Eq. (48)). This process has been previously described,
but in this work a different form is chosen for Q. Using the Biot-Savart law would allow us to
find Q as the velocity induced by w. This is a field that fills all space and is therefore too costly
to compute, since each field point would require an integration over the entire sheet. However,
Q can also be defined as a velocity normal to the sheet that defines w (see Fig. 24). Such
a field is zero everywhere, except where w is nonzero and therefore is computed at relatively
few points. This representation seems unphysical at first, because such normal velocities do
not exist in the wake. However, on finding ¢ (from the continuity equation) and adding all
velocity components to get the total V, this normal velocity is cancelled by VO, leaving the
expected induced flow throughout the entire field. That this must happen becomes obvious
when we recall that the Biot-Savart law is itself derived from the continuity equation (i.e.,
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Laplace's equation). From this point of view we could think of this potential solver as a non-
linear, Biot-Savart induced-flow solver. Moreover, this is the same solver that is solving for
the local flow on the rotor. Subsequently, the symbol QV will be used to denote this normal
form of Q.

To find the required strength of QV we use Gauss's theorem to obtain a relation from the
integral of QV along a normal through each point on the sheet, thus

1P=JJQdsdn (54)

The circulation, F, is known at the upstream edge of the sheet (blade trailing edge) from
the lift distribution, which is computed as part of the entire calculation. Since F is constant
along mean streamlines within the sheet, it can easily be computed on the entire sheet. This
F distribution provides a scaling factor which gives the magnitude of Q' as soon as the width
and functional form of QV are determined. This width and functional form can be found by
means of a viscous solution or by simply choosing computationally convenient forms. For the
hover wake problem, the latter approach suffices. A particularly useful form for QV involves a
Clebsch-type [57] representation:

QV = rcVA (55)

where Fc is a 3-D field which smoothly goes to the appropriate F on the sheet as r approaches
the sheet surface. In this representation, F is a local-sheet-strength function (which is actually
smeared spacially to facilitate the treatment of highly curved sheet surfaces) and VA is a spacial
distribution function. The term A is any convenient function whose gradient is nonzero within
some specified small distance from the sheet. This specified smearing distance is chosen to be
on the order of the local grid size.

The major computational work in this method is the solution of the continuity equation
for the potential. To solve for q, a finite-volume, conservative, full-potential solver is used
that is semi-implicit (i.e., explicit in the radial direction only) and employs an AF scheme in
each radial plane. A blade-fixed H grid is used to solve for the potential (see [55] for details).
The resulting solution involves iteration between solving the mass equation and convecting
the shed circulation. Since this is a Lagrangian convection process there is no possibility of
vorticity dissipation. During the computation, a four-step procedure is repeatedly used: (1)
the vortex-sheet position is integrated as a set of marker streamlines to follow the flow using
interpolated values of V from the fixed grid; (2) QV is computed at grid points near the sheet;
(3) a potential 0 is computed at all grid points by solving the compressible mass conservation
equation; and (4) a new velocity V is computed at each grid point after adding QV to the
potential gradient and free-stream components of the velocity. At convergence the vortex
sheet follows the flow. This procedure has been implemented in a code called HELIX-I.

This new solution procedure has been applied to a number of hovering rotor configura-
tions. Comparisons have been made with experimental measurements of tip-vortex geometry,
thrust, and power. In order to compute the latter it was necessary to use a simple integral
boundary-layer code for skin friction and an energy-flux integral for induced power. Figure
25 shows the computed wake geometry for a 4-bladed, linearly twisted model rotor [131. The
wake is seen both by the wake marker loci (at a point 250 behind a blade) and the contours of
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vorticity that these markers carry through the field. The tip vortices can be clearly seen. The
axial and radial convection rates of these vortices are compared with experiment in Figs. 26
and 27 and the agreement is good. The experimental-to-computational comparison of the
lift/power polars is shown in Fig. 28. The computations somewhat overpredict the power at
higher lift, for reasons that are not yet clear. These are the first performance polars ever
predicted by differential CFD methods. Figures 29 and 30 show a similar set of comparisons
for a model Boeing 360 rotor, and the comparisons are favorable [58].

This is a new approach to flow computation, which combines the traditional CFD ability
to treat supercritical flows with the Lagrangian convection typical of the integral codes. Fur-
thermore, the approach greatly expands the capabilities of potential methods. The approach
is extendable to forward flight and should be able to handle any of the previously mentioned
advancing-rotor problems, but development work is required. It is significant that this class of
methods is the first in which differential CFD is used to produce hover results of engineering
interest.

V. ADVANCED ROTOR FLOW TOPICS

The previous section dealt with integrating the local blade analysis with the wake. With
the success of this integration in view, we now review some previously excluded flow topics
that need to be included in the total rotorcraft model in order to convert CFD into a truely
complete analysis.

DYNAMIC STALL AND OTHER SEPARATED FLOWS

Retreating blade dynamic stall is one of the most dangerous rotor flow conditions. It is
also one of the oldest aerodynamic problems involving major computational effort.

The oldest line of computational stall modeling used boundary-element analyses to model
the unsteady, separated flow on dynamically stalling airfoils [59, 60]. Such codes represent
the profile given by a vortex lattice or panel model and permit a circulation sheet to peel
from the blade surface, on cue from a boundary-layer analysis. The sheet organizes itself into
something similar to a stall vortex, convects downstream, and produces loads that resemble
measured values. The main problem is the accurate determination of the stall commencement
point and time.

One of the first stall analyses in the modern CFD sense is that of Wu et al. [61, 62]. This
approach is a combined integral-differential scheme in which the vorticity diffusion equation
is solved by difference methods and is simultaneously coupled to a Biot-Savart integral for
the induced velocity field. This approach can be especially efficient because the formulation
only requires computation where vorticity is nonzero. Figure 31, which illustrates the result
from such a computation, shows the streamlines and vorticity contours for a NACA0012
airfoil undergoing sinusoidal oscillations; a = 15' + 10sin(wt), where reduced frequency k =
wc/2V = 0.15. These computations clearly show the separation and downstream convection
of the classical leading-edge stall vortex. Flow reattachment can be seen also. These events
are reflected in the lift and moment plots of fig. 32. Unfortunately, the Biot-Savart integral
limits this approach to incompressible flows. This is a serious limitation, even for the low
Mach numbers which characterize retreating blade stall (Mach 0.3-0.5).
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One of the first purely differential CFD stall analyses was that of Mehta [63], who per-
formed laminar, incompressible computations that produced good qualitative comparisons
with stall data (see Fig. 33).

Recently, a more general compressible Reynolds-averaged, Navier-Stokes CFD method
has been developed by Sankar et al. f64]. This involves a centered, finite-difference, implicit
scheme that treats the viscous terms explicitly. Like all centered schemes, the method uses
specified artificial dissipation terms to assure stability (see [65]). Figure 34 from [66] shows a
comparison of computed and measured lift and pitching moment for a sinusoidally oscillating,
2-D airfoil (Sikorski SSC-A09). For this case, Mo, = 0.2, Re = 2.0x 106, and k = wc/2V = 0.1.
The angle of attack varies between 0' and 200. Generally good agreement is obtained for both
lift and moment, but there are important differences. The computed stall commences sooner
than the measured stall, which begins at the top of the stroke. The earlier computed stall can
be seen in both the pitching-moment drop and in the oscillations in the lift. The peak loads
are well predicted, especially the maximum nose-down moment. However, this is a deep-stall
case (one dominated by a distinct vortex generated at the leading edge), and many methods
that generate a leading-edge vortex (including a vortex-lattice method) will reproduce similar
peak moments. The problem is to accurately predict the beginning of stall. This becomes
especially important for light stalls, in which the well-organized vortex does not occur. Such
stalls can generate the greatest negative pitch damping and, hence, stall flutter. All published
computational-experimental comparisons (that this writer is aware of) treat only deep stall. A
systematic comparison of loads and pitch damping for light stalls would be useful. This could
be difficult because of the present state of turbulence modeling. The above computation used a
Baldwin-Lomax (BL) algebraic turbulence model that is not intended for strongly separated
flows. In [64] a K-E model was compared to a BL model for deep stall computations, and
surprisingly little improvement was found. It seems, then, that the basic impediments to the
solution of this problem are physical more than numerical. Even our ability to predict steady
stall is not well demonstrated. The examples shown above are a major advance, but this
advance is mainly a result of our improving computational capabilities.

Our computational ability to model unsteady stall does enable us to predict some major
trends that are not always or entirely governed by the details of turbulence. For example,
Figs. 35 and 36 show the computed and experimental lift history for an airfoil (SSC-A09)
undergoing a constant rate pitch-up [66]. It can be seen in these cases that the effects of Mach
number and pitch rate on stall initiation are well predicted, although the subsequent events
are not. It might be useful to seek other effects whose trends can be predicted by present
computational methods. For example, it is well known that most stall processes involve large
3-D effects. Furthermore, major claims have recently been made concerning the usefulness
of nonrectangular planforms for the alleviation of stall effects on very-high-speed helicopters.
An ability to demonstrate this usefulness, both computationally and experimentally, would be
of major scientific and engineering importance. To date, only steady computations [67] have
been made for such configurations. Figure 37 shows a numerical visualization of the computed
flow on a nonrotating, nonrectanglar blade using simulated particle trajectories. This TNS
computation shows tip-vortex formation, inboard separation regions, and general qualitative
agreement with observed flows (oil-flow visualizations).
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Steady 3-D TNS computations such as the preceding can also be useful in their own
right, especially for illuminating the details of tip-vortex formation. The tip vortex interacts
with following rotor blades and is therefore an important element in the prediction of higher-
harmonic loads and noise. Furthermore, it has been shown that the vortex formation process
can have an important influence on the tip drag [68, 69]. This process has been studied nu-
merically by Srinivasan et al. [70], again using the TNS equations with an algebraic turbulence
model. The effects of different types of tip cutoffs on the vortex formation were studied and
compared to experiment. Figure 38 shows a numerical flow-visualization comparison of the tip
vortex formation for a rounded and a flat wingtip. It can be seen that the sharp edges of the
squared tip induce an early lift-off of the tip vortex. Numerically generated patterns of surface
particle flows have been compared to actual oil-flow visualizations, as shown in Fig. 39 for a
rounded tip. Figure 40 shows a comparison of computed and experimental chordwise pressure
distributions near a wingtip. The test data are for a flat tip only, whereas the computational
results are for flat, round, and beveled tips. The flat-tip computations have all the qualitative
features of the data and become quantitatively correct away from the tip. In spite of the dif-
ferences seen in the tip pressures, the computational values for lift, drag, and pitching moment
are very close to the measured quantities. Clearly, computational tools do exist for studying
these effects, but the fine details of these flows can not yet be accurately predicted. This may
be due to the well-known turbulence modeling deficiencies. The same problems that are seen
in viscous tip computations will probably also occur in efforts to predict fuselage flows. These
flows must be simulated to obtain downloads in hover, and drag in forward flight. That these
problems are of great importance is illustrated by the major performance improvements that
can result from drag-reduction programs. CFD, together with major improvements in our
physical flow models, can be an important part of such design improvement work.

BLADE-VORTEX INTERACTIONS
Rotors encounter vortices under a wide variety of circumstances and the resulting in-

teractions are a fundamental source of vibratory loading and noise. The problem that most
simply embodies such interactions is that of a vortex convecting past a 2-D airfoil. The idea
in solving such a problem is that the techniques developed should be directly transferable to
3-D problems.

Srinivasan et al. [70] have studied the 2-D blade/vortex interaction (BVI) using both
small-disturbance and TNS flow models. Using the TNS equations, an attempt was also made
to directly convect the vortex as part of the total flow field. This attempt suffered from the
expected numerical diffusion. However, successful nondiffusing computations were then made
using the Steinhoff velocity decomposition method. Figure 41 shows computed grids (these are
adaptive), surface-pressure distributions, and Mach contours for such a computed close BVI.
This is a high-Mach-number case in which the vortex passes through the supersonic region
and momentarily bifurcates the shock. Favorable comparisons were also made with pressure
data from a rotor BVI test. Probably the most innovative CFD treatment of the 2-D BVI
problem is that of Rai [71] who developed a high-order, upwind TNS scheme whose dissipation
is low enough to permit a full velocity field convection of the vortex. This is also the first
method capable of predicting head-on BVIs. Figure 42 shows the grid that was used for these
computations. It includes a high-density upstream grid region which minimizes the vortex
dissipation prior to the BVI. Figure 43 shows the convection of the vortex before, during, and
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after the BVI. The post-BVI vortex has a duplex structure, which has been seen in rotor BVI
testing with smoke visualization. Figure 44 shows the corresponding pressure contours. These
are especially significant because they reveal the initiation of an acoustic wave generated by
the BVI. This method is clearly a valuable tool for the study of basic rotor acoustic signal
generation, and has been used in the work of Baeder [72]. Figure 45 shows the generation
and early development of a BVI-generated acoustic wave for a supercritical flow. Rai has also
made comparisons with the rotor BVI surface-pressure data of [73]. Figures 46 and 47 include
a schematic of this experiment and a comparison of the pressure data and computations,
which shows good agreement. The computed results shown here agree very closely with the
results of Srinivasan et al. [70]. The cost of this upwind scheme probably excludes it from
consideration as a practical computation method, but it constitutes a standard against which
other methods should be compared.

The first 3-D BVI computations were performed by Caradonna et al. [461, who used the
FPR code with a velocity-decomposition model of the vortex flow field. Good agreement
was obtained with the BVI pressure data of [74], for both parallel and oblique blade-vortex
interaction angles. Figure 48 shows a typical comparison of computed and measured surface
pressures for a transonic, oblique BVI. A surprising feature of this work is that good agree-
ment was seen in surface-pressure comparisons even for head-on parallel BVIs. Because the
present velocity decomposition requires a specified vortex structure, there is no mechanism
allowing for the alteration of this structure. Furthermore, the Bernoulli equation is not valid
within the vortex. Even so, good surface pressure agreement was obtained. This indicates the
possibility that the detailed momentum equations may not have to be solved strictly within
the vortex for some types of vortical interactions-a potentially significant possibility when
these methods are combined with the potential, vorticity-convection methods, such as those
described in Section IV. Another insight gained from this work involves the relative effective-
ness of Q coupling and alpha coupling. Both Q-field and surface-inflow methods of vortex
specification were tested. Although the surface inflow comparisons with data showed good
agreement, the Q-field method was consistently better. The Q-field method was found to be
superior for parallel and oblique interactions, and for subcritical and supercritical flows. The
reason for this is probably that a surface-inflow method involves approximating the effect of
the vortex as an effective body motion. It is well known from linear theory (for instance,
comparing the Theodorsen and Sears functions) that the response of a wing to a plunge and
a gust are initially quite different. The above comparison (between Q coupling and alpha
coupling) is directly analogous. It appears, therefore, that we will have to find a convenient
way to Q-couple our rotor blade computations.

The computational and experimental study of blade/vortex interactions will probably
continue for some time, because it is providing insight into important physical problems and
is a rich source of directions for computational modeling.

INGREDIENTS FOR PERFORMANCE PREDICTION

In order to reap the benefits of constructing a rotor/wake/fuselage CFD analysis, it is
necessary to study the accuracy of drag prediction. With CFD, our first means of drag
prediction is to directly integrate the surface-pressure distributions. Drag prediction is a very
rigorous test of a numerical method because drag is almost always a small number, involving
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cancellations of the forces from different parts of the blade. Conversely, lift is relatively easy to
predict. The accurate prediction of drag requires careful attention both to numerical accuracy
and to the physics. Numerical accuracy is usually a matter of assuring that the differencing
of geometric and flow quantities are consistent with each other [75] and that "good" grids are
used. Whereas consistency is something that is supposedly built into a code, grid construction
is usually a matter for the user and tends to be an art. There are only a few grid-construction
rules: (1) grids should be as orthogonal as possible, (2) rapid changes in grid size should be
avoided, and (3) the ratio of cell lengths should be as close as possible to one. Although
there are a number of grid generators, few (or none) are right for all situations, and user
intervention is the norm. Such intervention is usually required because of geometric or grid-
size limitations. The end result is often a less-than-ideal compromise, which can result in
very slow convergence or, worse, inaccuracy. An acid test of a solution is its drag accuracy.
Therefore it is often necessary to perform nonlifting, subcritical test computations, because
these are the only cases for which we know the theoretical drag. Physical accuracy is a matter
of having a proper viscous model. For most rotor flows, a noninteracting boundary-layer
model is probably adequate. For supercritical flows, the shock entropy rise is a greater and
more performance-limiting drag source. This is an important issue for potential methods,
which use an isentropic flow model. It has been shown [76-78] that potential methods can
be simply corrected to account for this entropy rise. One of the simplest such corrections
has been applied to the FPR code by Bridgeman et al. [37]. This consists of applying the
nonisentropic density expression

p - pie -AS/R (56)

where pi is the isentropic density given by Eq. (35) and AS is the shock-generated entropy
computed by the Rankine-Hugoniot relations. It can be shown that it suffices to use this
expression only at shock points. Equation (56) is strictly valid only for steady flows, but it
has produced good results for both steady and unsteady solutions. In general, it requires an
unusually strong shock (for rotors) for these corrections to be necessary. Such flows often
involve shock-induced separation and probably require at least a TNS flow model. Although
the use of a strongly interacting boundary layer is also possible these methods tend not to be
very robust for strong shocks. Of course, all these analyses encounter the turbulence modeling
problem. Our reliance on testing will not soon disappear for flows with strong shocks, but
we now have the computational tools and the option to design configurations that avoid such
situations.

Figure 14 showed a comparison of the computed and measured torque for a nonlifting
rotor. This FPR computation employed a 2-D, noninteracting integral boundary-layer model
(Nash-MacDonald). Subsequent computations [79, 80] have also used the 3-D finite-difference
boundary-layer code BL3D [81]. For this simple rectangular rotor, drag results are very
similar for the two boundary-layer models, the integral method predicting somewhat lower
values. However, beyond drag divergence the difference is inconsequential because most of the
drag is due to inviscid effects. In order to further test our drag prediction ability, nonlifting
comparisons have also been performed for nonrectangular rotors. Figure 49 shows a sketch
of the tested rotor and two pressure distributions plotted as functions of chord and profile
height (as required for drag integration). It can be seen in Fig. 50 that the computed inviscid,
spanwise drag distributions for rectangular and swept planforms are very different. For the
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rectangular case the drag is very close to zero except near the tip. Much of this small drag is
numerical. However, the inviscid drag for even a nonlifting rotor is nonzero due to acoustic
radiation. Figure 51 shows a comparison of computed and measured torque for the swept
rotor, using the integral and finite-difference boundary-layer models. It appears that fairly
simple boundary-layer corrections will be applicable for a wide range of conditions. The ability
to directly integrate surface pressure to obtain drag indicates that we should also be able to
find induced drag by similar means. However, this depends on our ability to accurately predict
the wake.

VI. CONCLUDING REMARKS

Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the
need for interdependent computational and experimental studies is great. Rotor CFD is unique
in that its developers have frequently been experimentalists as well. This has maintained a
needed balance between our ability to compute and our ability to see the whole problem.
Considerable progress has been made and we can begin to think of rotor CFD as a viable
engineering tool as well as a means for basic studies.

3-D unsteady, nonlinear potential methods are becoming fast enough to enable their use
in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete
trimmed rotor solution can be performed in about an hour on a CRAY Y-MP (or ten minutes,
with multiple processors). These computational speeds indicate that in the near future many
of our large CFD problems will no longer require a supercomputer. It is also becoming clear
that potential-based methods are more capable than we had previously supposed. The ability
to convect circulation is routine for integral methods, but only recently have we discovered how
to do the same with differential methods. With the HELIX-I code it is possible to compute an
entire hover performance polar (about five full 3-D, supercritical flow computations, including
boundary-layer and free-wake) in about six hours. Steady, viscous airfoil computations (for
example, with ARC2D) for flows with no major separation can be done in minutes. These
could greatly augment our still much-used airfoil data base.

It is clear, then, that the differential CFD rotor analyses are poised to enter the engineer-
ing workplace. Integral methods already constitute a mainstay. Although much development
is still required, the major need now is for skillful users who can apply these tools to their
own individual problems. Ultimately, it is these users who will integrate CFD into the entire
engineering process and provide a new measure of confidence in design and analysis.

It should be recognized that the above classes of analyses do not include several major
limiting phenomena (especially dynamic stall), which will continue to require empirical treat-
ment because of computational time constraints and our limited physical understanding. Such
empirical treatment should be included, however, into our developing CFD, engineering-level
analyses. Moreover, it is probable that in the near future CFD will be reliable enough to pro-
vide a new source of empirical information with which to supplement physical measurements.
We can expect to be able to visualize effects and test ideas in ways that are not possible with
physical testing. It is likely that properly constructed flow models containing corrections from
physical testing will be able to fill in unavoidable gaps in our experimental data base, both for
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basic studies and for specific configuration testing. For these kinds of applications, computa-
tional cost is not an issue. For rotorcraft, testing and computation will become increasingly
and truly interdependent, and the extent of this integration should be an important measure
of their effectiveness.

Finally, we should recognize that although rotorcraft are probably the most complex
of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing
community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and
must be used wisely. Therefore we must glean the fixed-wing work for many of our basic
methods. This approach has its limits, though, because rotor needs are unique and cannot be
met without much original thinking. This is a fertile field with much yet to accomplish.
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Fig. 21 A compaxison of measured and computed surface pressures on an SA349 rotor using
CAMRAD/FPR [451.
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Fig. 22 A comparison of hover surface pressure data with results from a unified rotor/wake
computation using a centered Euler scheme [511.
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Fig. 23 The dissipation of vorticity in a unified rotor/wake computation using an upwind
Euler scheme [53].
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Fig. 24 Alternate models of the shed wake showing a wake reformulation that permits free
circulation convection in a potential method [55].
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Fig. 25 A computed wake structure for a hovering rotor using the HELIX-I vorticity-
convecting, full-potential code [56].
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Fig. 26 A comparison of measured and computed axial convection of a tip vortex [561.
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Fig. 27 A comparison of measured and computed radial convection of a tip vortex [561.

56



01 Measured
computation

0 Induced component of total
power by flux integral

.8- + Induced power by
pressure integral

0 10*

.06-

I- .04

+6-

.02-

0.2 .4 .6 .8

power, Coox 0

Fig. 28 A comparison of computed and measured rotor hover performance for a 4-blade rotor
[56].
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Fig. 29 A comparison of computed and measured rotor hover performance for the Boeing
Model 360 rotor [58].
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Fig. 30 The computed free convecting wake for the Boeing model 360 rotor [58].
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Fig. 31 Vorticity contours for a dynamic stall using an integral-differential scheme [62].
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Fig. 32 Lift and moment variations for a dynamic stall using an integral-differential scheme
[62].
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Fig. 33 Comparison of the results of Navier-Stokes computation with visualization of a
dynamically stalling airfoil [63].
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Fig. 34 Experimental and computed lift. and moment for a dynamic stall [66].

61



Constant pitch rate, ex
k = ac/U,.,

Comput. k = 0.02

3.0 -. 0 Exp. k = 0.02

. Comput. k = 0.01

25 Exp. k = 0.01

2.0 - Steady exp.

"J 1.5

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Angle of attack

Fig. 35 The lift variation for a dynamically stalling airfoil with constant pitch rate: the effect
of pitch rate [66].
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Fig. 36 The lift variation for a dynamically stalling airfoil with constant pitch rate: the effect
of Mach number (661.
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Fig. 37 A particle trajectory visualization of the steady stall of a nonrectangular rotor blade,
computed using TNS [67].

(a) Round tip

(b) Square tip

Fig. 38 The formation and liftoff of the tip vortex for a rectangular wing. M,,,= 0.17,
a = 11.8', and Re = 2 x 106a [70].
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(b)

Fig. 39 Tip-vortex studies: a comparison of computed and experimental surface oil flow pat-
terns. M, = 0.17, Re = 2 x 106 [70]. (a) Round tip-experiment. (b) Round tip-calculations.
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Fig. 40 Surface pressure distributions in the tip region of a rectangular wing with different
tip caps. M,, = 0.17, a~ = 11.80, and Re = 2 x 106 [70).
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Fig. 41 Instantaneous surface-pressure distributions, adaptive grid, and pressure contours
during an airfoil interaction with a convecting vortex. NACA0012, M. = 0.8, & = 0',
Re = 2 x 106, and closest approach distance = -0.26 chords [71].

66



- Zonal grid, with 3 zones
- Each zone contains 13,000 to 20,000 grid points

Far view (every 5th line) Close-up view (every 2nd line)

6 .6

4 .4

2 . . . . .. 2

-2 -. 2

-4 -. 4

-6 -. 6
-6 -4 -2 0 2 4 6 -. 2 0 .2 .4 .6 .8 1.0 1.2

x x

Fig. 42 An Euler/TNS grid for use in airfoil/vortex interaction studies [731.
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Fig. 43 Vorticity contours for a head-on blade/vortex interaction (BVI) computed using a
high-order upwind TNS scheme. A4. = 0.536 [73].

67



- j175' 85

(a) (C)

180, 1950

(b) d)_ _

Fig. 44 Pressure contours for a head-on BVI, showing the propagation of an acoustic wave.
M, = 0.536 [73].
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Fig. 45 Pressure contours for a supercritical BVI [74].
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Fig. 46 A rotor BVI test setup for the acquisition of surface pressure data [75, 76].
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Fig. 48 A comparison of measured BVI surface pressures with 3-D, full-potential results for
a supercritical oblique interaction [47].
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Fig. 50 The computed spanwise drag distribution for swept and rectangular blades [81].
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Fig. 51 Computed and measured torque for a swept-tip rotor in hover [81].
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